

Managing rising mine water to prevent aquifer pollution

Dr Ian Watson The Coal Authority

East of Wear Mining Block

2002: Rising Minewater Levels

The Coal

Authority

Key Contaminants

- Predictions made from :
 - Water quality during mining
 - Samples from shafts during rebound
- Iron up to 200 mg/l
- Salinity Hypersaline
- Chlorides 20,000 to 30,000 mg/l
- Sulphate 3,000 to 5,000 mg/l

Source Protection Zones

Permian Magnesian Limestone Aquifer

c. 36 Million Litres / day abstracted by Northumbrian Water Ltd:

150,000 people rely on this major aquifer for drinking water

Possible Impacts

Horden Control of Water Levels

Horden Temporary Active Treatment Scheme

The Coal

Horden Temporary Active Treatment Scheme

Horden Shaft Water Profile

Hydraulic Control Risks

Main pump/treat site at Dawdon

- For hydraulic control North of Ludworth Dyke
- Dawdon shaft is deeper than Horden
 - Expect worse quality mine water
 - Higher chlorides, iron etc.
- Active treatment technology to remove Iron
 - 150 l/s capacity

Secondary pump/treat site at Horden

- Existing 100 to 150 l/s capacity temporary active plant
 - Chlorides high due to high pumping rate
- Reduce to 50 l/s when Dawdon on stream
- If chlorides reduce replace with passive plant
 - Settling lagoons and reed beds

Treatment Layout

Process Construction

Multi disciplinary project

Over 30 different sub-contractors

Complex programming

Short Sea Outfall

Coastal Modelling:

- **Dispersion Modelling and Sea Bed Survey**
- Directional Drilling from cliff top to sea bed

Pumping at Dawdon

Status in 2008

- Preventing Aquifer Pollution by:
- 2 Active Pump & Treat schemes:
 - Horden Temporary
 - Dawdon
- Final Phase:
- Replace Horden active with Passive
 - New Lagoons and reedbeds
 - Reedbeds depend on decreased Chloride

Horden Quality 2004-2010

June 2004 Horden active plant operational

- Nov 2008Dawdon active plant operational 150 l/sReduce Horden rate to ~50 l/s
- 2010 Commence construction of Horden passive plant
- **2011** Horden passive plant operational Dismantle Horden active plant

Horden Passive forming of lagoon cells

Horden Passive - Lining the cells

Aerial View May 2011

Morlais, South Wales at commissioning

Pumping at 2 sites Dawdon Active treatment for: High flows of poor quality water Horden Passive treatment for: Smaller flows of better quality water

Drinking Water Aquifer protected